Noninvasive cancer detection by extracting and integrating multi-modal data from whole-methylome sequencing of plasma cell-free DNA

Author:

Bie Fenglong,Wang Zhijie,Li Yulong,Hong Yuanyuan,Han Tiancheng,Lv Fang,Yang Shunli,Li Suxing,Li Xi,Nie Peiyao,Zang Ruochuan,Zhang Moyan,Song Peng,Feng Feiyue,Guo Wei,Duan Jianchun,Bai Guangyu,Li Yuan,Huai Qilin,Zhou Bolun,Huang Yu,Chen Weizhi,Tan Fengwei,Gao ShugengORCID

Abstract

AbstractPlasma cell-free DNA (cfDNA) methylation and fragmentation signatures have been shown to be valid biomarkers for blood-based cancer detection. However, conventional methylation sequencing assays are inapplicable for fragmentomic profiling due to bisulfite-induced DNA damage. Here using enzymatic conversion-based low-pass whole-methylome sequencing (WMS), we developed a novel approach to comprehensively interrogate the genome-wide plasma methylation, fragmentation, and copy number profiles for sensitive and noninvasive multi-cancer detection. With plasma WMS data from a clinical cohort comprising 497 healthy controls and 780 patients with both early- and advanced-stage cancers of the breast, colorectum, esophagus, stomach, liver, lung, or pancreas, genomic features including methylation, fragmentation size, copy number alteration, and fragment end motif were extracted individually and subsequently integrated to develop an ensemble cancer classifier, called THEMIS, using machine learning algorithms. THEMIS outperformed individual biomarkers for differentiating cancer patients of all seven types from healthy individuals and achieved a combined area under the curve value of 0.971 in the independent test cohort, translating to a sensitivity of 86% and early-stage (I and II) sensitivity of 77% at 99% specificity. In addition, we built a cancer signal origin classifier with true-positive cancer samples at 100% specificity based on methylation and fragmentation profiling of tissue-specific accessible regulatory elements, which localized cancer-like signal to a limited number of clinically informative sites with 66% accuracy. Overall, this proof-of-concept work demonstrates the feasibility of extracting and integrating multi-modal biomarkers from a single WMS run for noninvasive detection and localization of common cancers across stages.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3