A phylogenomic approach to resolving interrelationships of polyclad flatworms, with implications for life history evolution

Author:

Goodheart Jessica A.ORCID,Collins Allen G.ORCID,Cummings Michael P.,Egger BernhardORCID,Rawlinson Kate A.ORCID

Abstract

ABSTRACTPlatyhelminthes (flatworms) are a diverse invertebrate phylum that are useful for exploring life history evolution. Within Platyhelminthes, only two clades develop through a larval stage: free-living polyclads and parasitic neodermatans. Neodermatan larvae are considered evolutionarily derived, whereas polyclad larvae are hypothesized to be retained from the last common ancestor of Platyhelminthes – and Spiralia – due to ciliary band similarities among polyclad and other spiralian larvae. However, larval evolution has been challenging to investigate within polyclads due to low support for deeper phylogenetic relationships. To investigate polyclad life history evolution, we generated transcriptomic data for 21 species of polyclads to build a well-supported phylogeny for the group. We then used ancestral state reconstruction to investigate ancestral modes of development (direct vs indirect) within Polycladida, and flatworms in general. The resulting tree provides strong support for deeper nodes and we recover a new monophyletic clade of early branching cotyleans. Early branching clades of acotyleans and cotyleans possess diverse modes of development, suggesting a complex history of larval evolution in polyclads that likely includes multiple losses and/or multiple gains. Our ancestral state reconstructions in a previous platyhelminth phylogeny also suggests that similarities in larval morphology between flatworms and other phyla may have re-emerged secondarily or are convergently evolved.

Publisher

Cold Spring Harbor Laboratory

Reference79 articles.

1. A New Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans

2. Genes with spiralian-specific protein motifs are expressed in spiralian ciliary bands

3. Trochophora larvae: cell-lineages, ciliary bands and body regions. 2. Other groups and general discussion;J. Exp. Zool. B Mol. Dev. Evol.,2005

4. The nervous system and ciliary band of Müller’s larva

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3