A Versatile Linker for Probes Targeting Hydrolases via In Situ labeling

Author:

Liu Jun,Chen Zixin,Cui Chao,Sigler Ashton L.,Cui LinaORCID

Abstract

AbstractHydrolases are important molecules that are involved in a wide range of biological functions and their activities are tightly regulated in healthy or diseased states. Detecting or imaging the activities of hydrolases, therefore, can reveal underlying molecular mechanisms in the context of cells to organisms, and their correlation with different physiological conditions can therefore be used in diagnosis. Due to the nature of hydrolases, substrate-based probes can be activated in their catalytic cycles, and cleavage of covalent bonds frees reporter moieties. For test-tube type bulk detection, spatial resolution is not a measure of importance, but for cell- or organism-based detection or imaging, spatial resolution is a key factor for probe sensitivity that influences signal-to-background ratio. One strategy to improve spatial resolution of the probes is to form a covalent linkage between the reporter moiety and intracellular proteins upon probe activation by the enzyme. In this work, we developed a generalizable linker chemistry that would allow in situ labeling of various imaging moieties via quinone methide species. To do so, we synthesized probes containing a monofluoromethyl or a difluoromethyl groups for β-galactosidase activation, while using fluorescein as a fluorescent reporter. The labeling efficacy of these two probes was evaluated in vitro. The probe bearing a monofluormethyl group exhibited superior labeling efficiency in imaging β-galactosidase activity in living cells. This study provides a versatile linker for applying quinone methide chemistry in the development of hydrolase-targeting probes involving in situ labeling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3