EXTENDED ABSORPTION OF LIOTHYRONINE FROM POLY-ZINC-LIOTHYRONINE (PZL) IN HUMANS

Author:

Dumitrescu Alexandra M.,Hanlon Erin C.ORCID,Arosemena Marilyn,Duchon Olga,Ettleson Matthew,Giurcanu MihaiORCID,Bianco Antonio C.ORCID

Abstract

AbstractBackgroundLiothyronine (LT3) has been increasingly used in combination with levothyroxine (LT4) in the treatment of hypothyroidism. A metal coordinated form of LT3, known as poly-zinc-liothyronine (PZL), avoided in rats the typical T3 peak seen after oral administration of LT3.ObjectivesTo evaluate in healthy volunteers (i) the pharmacokinetics of PZL-derived T3 after a single dose, (ii) the pharmacodynamics of PZL-derived T3, (iii) monitoring for the adverse events; (iv) exploratory analysis of the sleep patterns after LT3, PZL or placebo administration.Methods12 healthy volunteers 18 to 50 years of age were recruited for a Phase 1, double-blind, randomized, single-dose placebo-controlled, cross-over study to compare PZL against LT3 or placebo. Subjects were admitted three separate times to receive a randomly assigned capsule containing placebo, 50-mcg LT3, or 50-mcg-PZL, and were observed for 48h. A 2-week washout period separated each admission.ResultsLT3-derived serum T3 levels exhibited the expected profile, with a Tmax at 2h and return to basal levels by 24-36h. PZL-derived serum T3 levels exhibited a ∼30% lower Cmax that was 1 h delayed and extended into a plateau that lasted up to 6h. This was followed by a lower but much longer plateau; by 24 hours serum T3 levels still exceeded ½ of Cmax. TSH levels were similarly reduced indistinguishably in both groups.ConclusionPZL possesses the necessary properties to achieve a much improved T3 pharma-cokinetic. Drug product development of PZL should improve the delivery of T3 even further. PZL is on track to provide hypothyroid patients with stable levels of serum T3.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Levothyroxine/Liothyronine Combinations in Treating Hypothyroidism;Endocrinology and Metabolism Clinics of North America;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3