Evaluation of persistence and fate of ex vivo edited-HSC modified with donor template and Its role in correcting Sickle Cell Disease

Author:

Pattabhi Sowmya,Lotti Samantha N.,Berger Mason P.,Singh Swati,Rawlings David J.

Abstract

AbstractSickle cell disease (SCD) is caused by a single nucleotide transversion in exon 1 of the HBB gene that changes the hydrophobicity of adult globin (βA), leading to substantial morbidity and reduced lifespan. Ex vivo autologous gene editing utilizing co-delivery of a designer nuclease along with a DNA donor template allows for precise homology-directed repair (HDR). These gene corrected cells when engrafted into the bone marrow (BM) can prove to be therapeutic and serves as an alternative to HLA-matched BM transplantation. In the current study, we extensively explored the role of single stranded oligonucleotide (ssODN) and recombinant adeno-associated 6 (rAAV6) donor template delivery to introduce a codon-optimized change (E6optE) or a sickle mutation (E6V) change following Crispr/Cas9-mediated cleavage of HBB in healthy human mobilized peripheral blood stem cells (mPBSCs). We achieved efficient HDR in vitro in edited cells and observed robust human CD45+ engraftment in the BM of NBSGW mice at 16-17 weeks. Notably, recipients of ssODN-modified HSC exhibited a significantly higher proportion of HDR-modified cells within individual BM, CD34+ and CD235+ compartments of both E6optE and E6V cohorts. We further assessed key functional outcomes including RNA transcripts analysis and globin sub-type expression. Our combined findings demonstrate the capacity to achieve clinically relevant HDR in vitro and in vivo using both donor template delivery method. The use of ssODN donor template-delivery is consistently associated with higher levels of gene correction in vivo as demonstrated by sustained engraftment of HDR-modified HSC and erythroid progeny. Finally, the HDR-based globin protein expression was significantly higher in the E6V ssODN-modified animals compared to the rAAV6-modified animals confirming that the ssODN donor template delivery outperforms rAAV6-donor template delivery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3