Development of opioid-induced hyperalgesia depends on reactive astrocytes controlled by Wnt5a signaling

Author:

Liu Xin,Bae Chilman,Liu Bolong,Zhang Yongmei,Zhou Xiangfu,Yamaguchi Terry P.,Chung Jin Mo,Tang Shao-Jun

Abstract

AbstractOpioid analgesics are the frontline pain medicine for managing various types of pain. Paradoxically, repeated use of opioid analgesics may cause an exacerbated pain state known as opioid-induced hyperalgesia (OIH). OIH significantly contributes to dose escalation and consequently opioid overdose. In addition to neuronal malplasticity, emerging evidence suggests a critical role of reactive glia in OIH development. A potential astrocytic underpinning of OIH pathogenesis is indicated by their prominently activation in OIH animal models. However, this hypothesis has not been conclusively tested and the mechanism underlying the astrocyte activation remains unclear. Here, we show that reactive astrocytes (a.k.a. astrogliosis) are critical for OIH development in mice. Genetic ablation of astrogliosis inhibited the expression of OIH and morphine-induced neural circuit polarization (NCP) in the spinal dorsal horn (SDH). We also found that Wnt5a is a neuron-to-astrocyte signal that is required for morphine-induced astrogliosis. Conditional knock-out of Wnt5a in neurons or its co-receptor ROR2 in astrocytes blocked not only morphine-induced astrogliosis but also OIH and NCP. Furthermore, we showed that the Wnt5a-ROR2 signaling-dependent astrogliosis contributes to OIH via inflammasome-regulated IL-1β. Our results reveal an important role of morphine-induced astrogliosis in OIH pathogenesis and elucidate a neuron-to-astrocyte intercellular Wnt signaling pathway that controls the astrogliosis.One sentence summaryNeuron-to-astrocyte Wnt5a signaling controls the pathogenesis of opioid-induced hyperalgesia via astrogliosis

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3