Modelling the spatial and temporal constrains of the GABAergic influence on neuronal excitability

Author:

Lombardi AnielloORCID,Luhmann Heiko J.,Kilb WernerORCID

Abstract

AbstractGABA (γ-amino butyric acid) is an inhibitory neurotransmitter in the adult brain that can mediate depolarizing responses during development or after neuropathological insults. Under which conditions GABAergic membrane depolarizations are sufficient to impose excitatory effects is hard to predict, as shunting inhibition and GABAergic effects on spatiotemporal filtering of excitatory inputs must be considered. To evaluate at which reversal potential a net excitatory effect was imposed by GABA (EGABAThr), we performed a detailed in-silico study using simple neuronal topologies and distinct spatiotemporal relations between GABAergic and glutamatergic inputs.These simulations revealed for GABAergic synapses located at the soma an EGABAThr close to action potential threshold (EAPThr), while with increasing dendritic distance EGABAThr shifted to positive values. The impact of GABA on AMPA-mediated inputs revealed a complex temporal and spatial dependency. EGABAThr depends on the temporal relation between GABA and AMPA inputs, with a striking negative shift in EGABAThr for AMPA inputs appearing after the GABA input. The spatial dependency between GABA and AMPA inputs revealed a complex profile, with EGABAThr being shifted to values negative to EAPThr for AMPA synapses located proximally to the GABA input, while for distally located AMPA synapses the dendritic distance had only a minor effect on EGABAThr. For tonic GABAergic conductances EGABAThr was negative to EAPThr over a wide range of gGABAtonic values. In summary, these results demonstrate that for several physiologically relevant situations EGABAThr is negative to EAPThr, suggesting that depolarizing GABAergic responses can mediate excitatory effects even if EGABA did not reach EAPThr.Author summaryThe neurotransmitter GABA mediates an inhibitory action in the mature brain, while it was found that GABA provokes depolarizations in the immature brain of after neurological insults. It is, however, not clear to which extend these GABAergic depolarizations con contribute to an excitatory effect. In the present manuscript we approached this question with a computational model of a simplified neurons to determine which amount of a GABAergic depolarizing effect, which we quantified by the so called GABA reversal potential (EGABA), was required to turn GABAergic inhibition to excitation. The results of our simulations revealed that if GABA was applied alone a GABAergic excitation was induced when EGABA was around the action potential threshold. When GABA was applied together with additional excitatory inputs, which is the physiological situation in the brain, only for spatially and temporally correlated inputs EGABA was close to the action potential threshold. For situations in which the additional excitatory inputs appear after the GABA input or are distant to the GABA input, an excitatory effect of GABA could be observed already at EGABA substantially negative to the action potential threshold. This results indicate that even slightly depolarizing GABA responses, which may be induced during or after neurological insults, can potentially turn GABAergic inhibition into GABAergic excitation.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3