Physiologically distinct neurons within the ventrolateral periaqueductal gray are not defined by mu-opioid receptor expression but are differentially activated by persistent inflammation

Author:

McPherson Kylie B.ORCID,Bouchet Courtney A.ORCID,Ingram Susan L.ORCID

Abstract

AbstractThe ventrolateral periaqueductal gray (vlPAG) is a key structure within the descending pain modulatory pathway and an important target for opioid-induced analgesia. This area contains heterogeneous neurons with respect to neurotransmitter and receptor expression so it is difficult to define vlPAG neurons that contribute to pain and analgesia. Characterization of intrinsic membrane properties of 371 vlPAG neurons from female and male Long-Evans rats identified 4 neuron types with distinct intrinsic firing patterns: Phasic, Tonic, Onset, and Random. Phasic and Tonic neurons comprise the majority of the neurons sampled. Mu-opioid receptor (MOR) expression was determined by the ability of the selective MOR agonist DAMGO to activate G protein-coupled inwardly-rectifying potassium channel (GIRK) currents. Opioid-sensitive and -insensitive neurons were observed within each neuron type in naïve rats and in rats pretreated with Complete Freund’s adjuvant in a hindpaw to produce persistent inflammation. The presence of low threshold spikes (LTS) did not correlate with MOR-mediated GIRK currents indicating that MOR expression alone does not define a physiologically distinct neuron type in the vlPAG. MOR activation inhibited firing in nearly all spontaneously active neurons, both in naïve and persistent inflammation conditions. CFA-induced inflammation increased Fos expression at both acute (2 h) and persistent inflammation (5-7 d) time points. However, persistent, but not acute, inflammation selectively enhanced spontaneous firing and lowered firing thresholds of Phasic neurons which was maintained in the absence of synaptic inputs. Taken together, persistent inflammation selectively activates Phasic neurons, of which only a subset was opioid-sensitive.Significance statementIntrinsic membrane properties define separate vlPAG neurons types that are functionally important. Persistent, and not acute, inflammation selectively activates Phasic firing vlPAG neurons that are not defined by MOR expression. Although the vlPAG is known to contribute to the descending inhibition of pain, the activation of a single physiologically-defined neuron type in the presence of inflammation may represent a mechanism by which the vlPAG participates in descending facilitation of pain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3