RiboTRIBE: Monitoring Translation with ADAR-meditated RNA Editing

Author:

Xu WeijinORCID,Abruzzi Katharine,Rosbash Michael

Abstract

AbstractRNA translation is tightly regulated to ensure proper protein expression in cells and tissues. Translation is often assayed with biochemical assays such as ribosome profiling and TRAP, which are effective in many contexts. These assays are however not ideal with limiting amounts of biological material when it can be difficult or even impossible to make an extract with sufficient signal or sufficient signal:noise. Because of our interest in translational regulation within the few Drosophila adult circadian neurons, we fused the ADAR catalytic domain (ADARcd) to several small subunit ribosomal proteins and assayed mRNA editing in Drosophila S2 cells. The strategy is named RiboTRIBE and is analogous to a recently published APOBEC-based method. The list of RiboTRIBE-edited transcripts overlaps well with ribosome profiling targets, especially with more highly ranked targets. There is also an enriched number of editing sites in ribosome-associated mRNA comparing to total mRNA, indicating that editing occurs preferentially on polyribosome-associated transcripts. The use of cycloheximide to freeze translating ribosomes causes a substantial increase in the number of RiboTRIBE targets, which is decreased by pretreating cells with the chain terminating drug puromycin. NOTE: Additional experiments performed after first submitting this manuscript to BioRxiv estimate that less than 5% of Rps28b-ADAR is ribosome-associated. This is because the vast majority of the fusion protein sediments at the top of a polyribosome gradient. We therefore suggest that most editing reported in the manuscript is not catalyzed by ribosome-associated ADAR (10/2/2021).

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proximity Labeling Techniques: A Multi‐Omics Toolbox;Chemistry – An Asian Journal;2021-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3