ATM-Mediated Double-Strand Break Repair Is Required for Meiotic Genome Stability at High Temperature

Author:

Zhao Jiayi,Gui Xin,Ren ZimingORCID,Fu Huiqi,Yang ChaoORCID,Liu Qingpei,Zhang Min,Wang Wenyi,Wang ChongORCID,Schnittger ArpORCID,Liu BingORCID

Abstract

AbstractIn eukaryotes, the conserved kinase Ataxia Telangiectasia Mutated (ATM) negatively regulates DNA double-strand break (DSB) formation and plays a central role in DSB repair. Here, by using cytogenetic approaches, we demonstrate that ATM also plays an essential role in protecting meiotic chromosome integrity in Arabidopsis thaliana at extreme high temperature. We determined the chromosome localization patterns of DSB formation proteins SPO11-1 and DFO during prophase I, both of which were disturbed by heat stress. Evaluation of the number of RAD51, DMC1, SPO11-1 and DFO protein foci in meiocytes of Arabidopsis atm mutant clarifies that ATM does not mediate the heat-induced reduction in DSB formation. Interestingly, meiotic spread analysis showed that chromosome fragmentation level was significantly increased in atm but was lowered in the mre11 and mre11 atm mutants under high temperature, indicating that ATM-dependent meiotic chromosome integrity at high temperature relies on the functional MRE1-RAD50-NBS1 (MRN) complex. Moreover, contrary to the rad51 and mnd1 mutants, which exhibited enhanced meiotic chromosome integrity under heat stress, the rad51 atm and mnd1 atm mutants retained high levels of chromosome fragmentation at extreme high temperature. Furthermore, heat stress reduced chromosome fragmentation level in the syn1 and syn1 atm mutants. Collectively, these data suggest that ATM-mediated DSB repair is required for meiotic genome stability in plants at extreme high temperature, which possibly acts in a RAD51-independent manner and relies on functional chromosome axis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3