Allosteric regulation of switch-II controls K-Ras oncogenicity

Author:

Yang Moon HeeORCID,Tran Timothy H.,Hunt Bethany,Agnor Rebecca,Johnson Christian W.ORCID,Waybright Timothy J.ORCID,Nowak Jonathan A.,Stephen Andrew G.ORCID,Simanshu Dhirendra K.ORCID,Haigis Kevin M.ORCID

Abstract

AbstractRas proteins are GTPases that regulate a wide range of cellular processes. The activity of Ras is dependent on its nucleotide-binding status, which is modulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Previously, we demonstrated that mutation of lysine 104 to glutamine (K104Q) attenuates the transforming capacity of oncogenic K-Ras by interrupting GEF induced nucleotide exchange. To assess the effect of this mutation in vivo, we used CRISPR/Cas9 to generate mouse models carrying the K104Q point mutation in wild-type and conditional K-RasLSL-G12D alleles. Consistent with our previous findings from in vitro studies, the oncogenic activity of K-RasG12D was significantly attenuated by mutation at K104 in vivo. These data demonstrate that lysine at position 104 is critical for the full oncogenic activity of mutant K-Ras and suggest that modification at K104, for example acetylation, may also regulate its activity. In addition, animals homozygous for K104Q were viable, fertile, and arose at Mendelian frequency, indicating that K104Q is not a complete loss of function mutation. Using biochemical and structural analysis, we found that the G12D and K104Q mutations cooperate to suppress GEF-mediated nucleotide exchange, explaining the preferential effect of K104Q on oncogenic K-Ras. Finally, we discovered an allosteric regulatory network consisting of K104 and residues including G75 on switch II (SWII) that is the key for regulating the stability of the α helix on SWII. In this allosteric network, K104-G75 interaction might be primary for keeping stabilization of SWII. Given the high frequency of KRAS mutations in human cancers, modulation of this network may provide a unique therapeutic approach.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3