Copper as a Novel Regulator of PERK

Author:

Bond Sarah E.ORCID,Beratan Noah R.,Bond Margaret K.,Brady Donita C.ORCID,Jordan-Sciutto Kelly L.ORCID

Abstract

AbstractPERK is a transmembrane kinase located on the ER with a luminal domain that senses ER stresses, such as protein misfolding, and a cytosolic kinase domain. Upon stress sensing, PERK activates and phosphorylates eIF2α to attenuate global translation while upregulating select transcripts to re-establish protein homeostasis. In a secondary phase of signaling PERK can also induce apoptosis to dispose of terminally stressed and damaged cells. Thus, the delineated bi-phasic nature of PERK signaling requires tight regulation for homeostatic function, as evidenced by dysregulation of this pathway being implicated in many diseases, including cancers and neurodegenerative conditions. Pursuant attempts to therapeutically modulate PERK and its signaling outcomes have highlighted that our understanding of the determinants of adaptive vs. mal-adaptive signaling remain ambiguous, and further delineation of PERK regulation is required. Here we report copper as a regulator of PERK kinase activity. PERK copper binding activity was confirmed by selective affinity for a copper charged resin and by ICP-MS quantification of bound copper. Mutation of the putative copper binding site, identified based on homology, abolished copper binding. Copper-binding was also determined to be necessary for kinase activity in in vitro kinase assays. Physiologic manipulation of copper availability in cells modulated PERK activity and signaling. Using this relationship, we show that copper availability determines ER stress tolerance and cell fate outcomes. This novel regulatory mechanism has broad implications for modulation of PERK activity in different diseases and disease models, and may constitute a previously unaccounted for variable in determining when PERK inhibition vs activation is therapeutically beneficial.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3