Protrusion growth driven by myosin-generated force

Author:

Fitz Gillian N.ORCID,Weck Meredith L.ORCID,Bodnya Caroline,Perkins Olivia L.,Tyska Matthew J.ORCID

Abstract

SUMMARYActin-based protrusions are found on the surface of all eukaryotic cells, where they support diverse biological activities essential for life. Models of protrusion growth hypothesize that actin filament assembly provides the mechanical force for bending the plasma membrane outward. However, membrane-associated myosin motors are also abundant in protrusions, though their potential for contributing growth-promoting force remains unexplored. Using a novel inducible system that docks myosin motor domains to membrane binding modules with temporal control, we found that the application of myosin-generated force to the plasma membrane is sufficient for driving robust elongation of protrusions. Protrusion growth scaled with motor accumulation, required active, barbed end-directed force, and was independent of cargo delivery or the recruitment of canonical barbed end elongation factors. Application of growth-promoting force was also supported by structurally distinct myosin motor domains and membrane binding modules. We conclude that myosin-generated force can drive protrusion growth and this mechanism is likely active in diverse biological contexts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3