CRISPR-Mediated Generation and Characterization of a Gaa Homozygous c.1935C>A (p.D645E) Pompe Disease Knock-in Mouse Model Recapitulates Human Infantile Onset-Pompe Disease

Author:

Kan Shih-hsinORCID,Huang Jeffrey Y.ORCID,Harb Jerry,Rha AllisandraORCID,Dalton Nancy D.,Christensen ChloeORCID,Chan Yunghang,Davis-Turak JeremyORCID,Neumann JonORCID,Wang Raymond Y.ORCID

Abstract

AbstractPompe disease (PD) is an autosomal recessive disorder caused by deficient lysosomal acid α-glucosidase (GAA), leading to reduced degradation and subsequent accumulation of intra-lysosomal glycogen in tissues, especially skeletal and oftentimes cardiac muscle. The c.1935C>A (p.Asp645Glu) variant is the most frequent GAA pathogenic mutation in people of Taiwanese and Southern Chinese ethnicity, causing infantile-onset PD (IOPD), which presents neonatally with severe hypertrophic cardiomyopathy, profound muscle hypotonia, and respiratory failure leading to premature death if untreated.To further investigate the pathogenic mechanism and facilitate development of therapies pertaining to this variant, we applied CRISPR-Cas9 homology-directed repair (HDR) using a novel dual sgRNA approach flanking the target site to generate a GaaEm1935C>A knock-in mouse model as well as a myoblast cell line carrying the Gaa c.1935C>A mutation. Herein we describe the molecular, biochemical, physiological, histological, and behavioral characterization of 3-month-old homozygous GaaEm1935C>A mice.Homozygous GaaEm1935C>A knock-in mice exhibited normal Gaa mRNA expression levels relative to wild-type mice, but GAA enzymatic activity was almost completely abolished, leading to a substantial increase in tissue glycogen storage, and significant concomitant impairment of autophagy. Echocardiography of 3-month-old knock-in mice revealed significant cardiac hypertrophy. The mice also demonstrated skeletal muscle weakness but, paradoxically, not early mortality. Longitudinal studies of this model, including assessment of its immune response to exogenously supplied GAA enzyme, are currently underway.In summary, the GaaEm1935C>A knock-in mouse model recapitulates the molecular, biochemical, histopathologic, and phenotypic aspects of human IOPD caused by the GAA c.1935C>A pathogenic variant. It is an ideal model to assess innovative therapies to treat IOPD, including personalized therapeutic strategies that correct pathogenic variants, restore GAA activity and produce functional phenotypes.

Publisher

Cold Spring Harbor Laboratory

Reference40 articles.

1. The respiratory neuromuscular system in Pompe disease

2. Identification of two subtypes of infantile acid maltase deficiency

3. Reuser, A. , R. Hirschhorn , and M.A. Kroos , Pompe disease: Glycogen storage disease type II, acid α-glucosidase (acid maltase) deficiency, in The Online Metabolic and Molecular Bases of Inherited Disease. Lysosomal Storage Disorders, A. Beaudet , et al., Editors. 2018, The McGraw-Hill Companies, Inc.: New York, NY.

4. Hirschhorn, R. and A.J.J. Reuser , Glycogen storage disease type II: acid-glucosidase (acid maltase) deficiency, in The Metabolic and Molecular Basis of Inherited Disease, C.R. Scriver , et al., Editors. 2001, McGraw-Hill: New York. p. 3389 – 3420.

5. Pompe Disease: From Basic Science to Therapy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3