Validation of an ICD-code-based case definition for psychotic illness across three health systems

Author:

Deo Anthony J.,Castro Victor M.,Baker Ashley,Carroll Devon,Gonzalez-Heydrich Joseph,Henderson David C.,Holt Daphne J.,Hook Kimberly,Karmacharya Rakesh,Roffman Joshua L.,Madsen Emily M.,Song Eugene,Adams William G.,Camacho Luisa,Gasman Sarah,Gibbs Jada S.,Fortgang Rebecca G.,Kennedy Chris J.,Lozinski Galina,Perez Daisy C.,Wilson Marina,Reis Ben Y.,Smoller Jordan W.

Abstract

AbstractBackground and HypothesisEarly detection of psychosis is critical for improving outcomes. Algorithms to predict or detect psychosis using electronic health record (EHR) data depend on the validity of the case definitions used, typically based on diagnostic codes. Data on the validity of psychosis-related diagnostic codes is limited. We evaluated the positive predictive value (PPV) of International Classification of Diseases (ICD) codes for psychosis.Study DesignUsing EHRs at three health systems, ICD codes comprising primary psychotic disorders and mood disorders with psychosis were grouped into five higher-order groups. 1,133 records were sampled for chart review using the full EHR. PPVs (the probability of chart-confirmed psychosis given ICD psychosis codes) were calculated across multiple treatment settings.Study ResultsPPVs across all diagnostic groups and hospital systems exceeded 70%: Massachusetts General Brigham 0.72 [95% CI 0.68-0.77], Boston Children’s Hospital 0.80 [0.75-0.84], and Boston Medical Center 0.83 [0.79-0.86]. Schizoaffective disorder PPVs were consistently the highest across sites (0.80-0.92) and major depressive disorder with psychosis were the most variable (0.57-0.79). To determine if the first documented code captured first-episode psychosis (FEP), we excluded cases with prior chart evidence of a diagnosis of or treatment for a psychotic illness, yielding substantially lower PPVs (0.08–0.62).ConclusionsWe found that the first documented psychosis diagnostic code accurately captured true episodes of psychosis but was a poor index of FEP. These data have important implications for the development of risk prediction models designed to predict or detect undiagnosed psychosis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3