Theta-burst direct electrical stimulation remodels human brain networks

Author:

Huang Yuhao,Zelmann RinaORCID,Hadar Peter,Dezha-Peralta Jaquelin,Richardson R. MarkORCID,Williams Ziv M.,Cash Sydney S.ORCID,Keller Corey J.ORCID,Paulk Angelique C.ORCID

Abstract

AbstractPatterned brain stimulation is a powerful therapeutic approach for treating a wide range of brain disorders. In particular, theta-burst stimulation (TBS), characterized by rhythmic bursts of 3-8 Hz mirroring endogenous brain rhythms, is delivered by transcranial magnetic stimulation to improve cognitive functions and relieve symptoms of depression. However, the mechanism by which TBS alters underlying neural activity remains poorly understood. In 10 pre-surgical epilepsy participants undergoing intracranial monitoring, we investigated the neural effects of TBS. Employing intracranial EEG (iEEG) during direct electrical stimulation across 29 stimulation cortical locations, we observed that individual bursts of electrical TBS consistently evoked strong neural responses spanning broad cortical regions. These responses exhibited dynamic changes over the course of stimulation presentations including either increasing or decreasing voltage responses, suggestive of short-term plasticity in the amplitude of the local field potential voltage response. Notably, stronger stimulation augmented the mean amplitude and distribution of TBS responses , leading to greater proportion of recording sites demonstrating short-term plasticity. TBS responses were stimulation site-specific and propagated according to the underlying functional brain architecture, as stronger responses were observed in regions with strong baseline effective (cortico-cortical evoked potentials) and functional (low frequency phase locking) connectivity. Further, our findings enabled the predictions of locations where both TBS responses and change in these responses (e.g. short-term plasticity) were observed. Future work may focus on using pre-treatment connectivity alongside other biophysical factors to personalize stimulation parameters, thereby optimizing induction of neuroplasticity within disease-relevant brain networks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3