A spatial model of autophosphorylation of Ca2+/calmodulin-dependent protein kinase II in a glutamatergic spine reveals dynamics of kinase activation in the first several seconds after a complex synaptic stimulus

Author:

Bartol Thomas M.ORCID,Ordyan Mariam,Sejnowski Terrence J.,Rangamani PadminiORCID,Kennedy Mary B.ORCID

Abstract

AbstractLong-term potentiation (LTP) is a biochemical process in excitatory glutamatergic synapses in the Central Nervous System (CNS). It is initiated by a bout of synaptic activation that is strong enough to contribute to production of an action potential in the axon of the postsynaptic neuron, and it results in an increase in the size of postsynaptic depolarization during subsequent activity. The first step leading to LTP is activation and autophosphorylation of an abundant postsynaptic enzyme, Ca2+/calmodulin-dependent protein kinase II (CaMKII). We use simulation of activation of CaMKII holoenzymes in a realistic spatial model of a spine synapse, created in MCell4, to test three hypotheses about how the autophosphorylation response of CaMKII is shaped during a repeated high-frequency stimulus. First, the simulation results indicate that autophosphorylation of CaMKII does not constitute a bistable switch under biologically realistic conditions. Instead, prolonged autophosphorylation of CaMKII may contribute to a biochemical “kinetic proof-reading” mechanism that controls induction of synaptic plasticity. Second, concentration of CaMKII near the postsynaptic membrane increases the local concentration of kinase activity. However, neither localization nor “Ca2+-calmodulin-trapping (CaM-trapping)” increase the proportion of autophosphorylated subunits in holoenzymes after a complex stimulus, as previously hypothesized. Finally, we show that, as hypothesized, the amplitude of autophosphorylation in the first 30 seconds after a stimulus is extremely sensitive to the level and location of PP1 activity when PP1 is present in biologically accurate amounts. We further show that prolonged steric hindrance of dephosphorylation of CaMKII, caused by CaM-trapping, can increase the amplitude of autophosphorylation after a complex stimulus. These simulation results sharpen our quantitative understanding of the early events leading to LTP at excitatory synapses.Author SummaryNeurons in the brain are interconnected in an organized fashion by synapses that transmit neuronal activity from one neuron to another. Most of the billions of neurons in the brain have about 10,000 synapses spread over the neuronal membrane. Information is stored in the brain when the ability of specific synapses to pass along neuronal activity is strengthened resulting in formation of new networks. The increase in strength of a synapse is tightly controlled by the frequency and amplitude of its activity, and by neurohormonal signals, which, in combination, can cause long-lasting biochemical changes at the synapse that underlie learning and memory. Defects in these biochemical pathways cause mental and neurological diseases. To develop treatments, we need to understand the precise choreography of these critical biochemical changes. However, the tiny size of the synaptic compartment makes precise measurements of the biochemical reactions impossible. We have used computer simulation techniques and information gathered from experiments on purified synaptic proteins to simulate, within a single synapse, the choreography of the first biochemical step in synaptic strengthening: activation of the enzyme Ca2+/ calmodulin-dependent protein kinase II. Our results provide insights that can be used in future studies to develop treatments for neuronal diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3