Neuromodulatory effects on synchrony and network reorganization in networks of coupled Kuramoto oscillators

Author:

Aktay Sinan,Sander Leonard M.,Zochowski MichalORCID

Abstract

AbstractNeuromodulatory processes in the brain can critically change signal processing on a cellular level leading to dramatic changes in network level reorganization. Here, we use coupled non-identical Kuramoto oscillators to investigate how changes in the shape of phase response curves from Type 1 to Type 2, mediated by varying ACh levels, coupled with activity dependent plasticity may alter network reorganization. We first show that when plasticity is absent, the Type 1 networks, as expected, exhibit asynchronous dynamics with oscillators of the highest natural frequency robustly evolving faster in terms of their phase dynamics. At the same time, the Type 2 networks synchronize, with oscillators locked so that the ones with higher natural frequency have a constant phase lead as compared to the ones with lower natural frequency. This relationship establishes a robust mapping between the frequency and oscillators’ phases in the network, leading to structure/frequency mapping when plasticity is present. Further we show that while connection plasticity can produce stable synchrony (so called splay states) in Type 1 networks, the structure/frequency reorganization observed in Type 2 networks is not present.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3