Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands.

Author:

Jhappan C,Gallahan D,Stahle C,Chu E,Smith G H,Merlino G,Callahan R

Abstract

Expression of the int-3 locus is activated in mouse mammary tumors as a consequence of insertional mutagenesis by the mouse mammary tumor virus (MMTV). Integration of the MMTV provirus into the int-3 locus promotes the transcription and translation of flanking cellular int-3 sequences sharing significant homology with the intracellular domain of the neurogenic Notch gene of Drosophila, and with the yeast cell cycle regulatory genes cdc10 and SWI6. To determine the in vivo consequences of activated int-3 expression, transgenic mice were generated harboring a genomic tumor DNA fragment consisting of the MMTV LTR and the flanking cellular int-3 sequences. All six int-3 founder transgenic mice and the progeny of one established line exhibited similar dramatic phenotypic abnormalities in tissues in which the transgene was expressed. Focal and often multiple poorly differentiated mammary and salivary adenocarcinomas appeared in the majority of transgenic mice between 2 and 7 months of age. Significantly, mammary glands were arrested in development and were lactation deficient in all female int-3 mice. The salivary glands, glands of the nasal mucosa and maxillary sinus, the extraorbital lacrimal glands, and the Harderian glands of juvenile and adult transgenic mice all contained proliferating immature ductule cells and were incompletely differentiated. In addition, all male int-3 transgenic mice were sterile, apparently the result of severe hyperplasia of the epididymis. These findings demonstrate in vivo that expression of the activated Notch-related int-3 gene causes deregulation of normal developmental controls and hyperproliferation of glandular epithelia.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Cited by 315 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3