Wastewater-based surveillance can be used to model COVID-19-associated workforce absenteeism

Author:

Acosta Nicole,Dai Xiaotian,Bautista Maria A.,Waddell Barbara J.,Lee Jangwoo,Du Kristine,McCalder Janine,Pradhan Puja,Papparis Chloe,Lu Xuewen,Chekouo Thierry,Krusina Alexander,Southern Danielle,Williamson Tyler,Clark Rhonda G.,Patterson Raymond A.,Westlund Paul,Meddings Jon,Ruecker Norma,Lammiman Christopher,Duerr Coby,Achari Gopal,Hrudey Steve E.,Lee Bonita E.,Pang Xiaoli,Frankowsk Kevin,Hubert Casey R.J.ORCID,Parkins Michael D.ORCID

Abstract

AbstractWastewater-based surveillance (WBS) is a powerful tool for understanding community COVID-19 disease burden and informing public health policy. The potential of WBS for understanding COVID-19’s impact in non-healthcare settings has not been explored to the same degree. Here we examined how SARS-CoV-2 measured from municipal wastewater treatment plants (WWTPs) correlates with local workforce absenteeism. SARS-CoV-2 RNA N1 and N2 were quantified three times per week by RT-qPCR in samples collected at three WWTPs servicing Calgary and surrounding areas, Canada (1.3 million residents) between June 2020 and March 2022. Wastewater trends were compared to workforce absenteeism using data from the largest employer in the city (>15,000 staff). Absences were classified as being COVID-19-related, COVID-19-confirmed, and unrelated to COVID-19. Poisson regression was performed to generate a prediction model for COVID-19 absenteeism based on wastewater data. SARS-CoV-2 RNA was detected in 95.5% (85/89) of weeks assessed. During this period 6592 COVID-19-related absences (1896 confirmed) and 4,524 unrelated absences COVID-19 cases were recorded. Employee absences significantly increased as wastewater signal increased through the pandemic’s waves. Strong correlations between COVID-19-confirmed absences and wastewater SARS-CoV-2 signals (N1 gene: r=0.824, p<0.0001 and N2 gene: r=0.826, p<0.0001) were observed. Linear regression with adjusted R2-value demonstrated a robust association (adjusted R2=0.783), when adjusted by 7 days, indicating wastewater provides a one-week leading signal. A generalized linear regression using a Poisson distribution was performed to predict COVID-19-confirmed absences out of the total number of absent employees using wastewater data as a leading indicator (P<0.0001). We also assessed the variation of predictions when the regression model was applied to new data, with the predicted values and corresponding confidence intervals closely tracking actual absenteeism data. Wastewater-based surveillance has the potential to be used by employers to anticipate workforce requirements and optimize human resource allocation in response to trackable respiratory illnesses like COVID-19.HighlightsWBS is a useful strategy for monitoring infectious diseases in workersSARS-CoV-2 RNA in wastewater correlated with workforce absenteeismWorkplace absenteeism secondary to COVID-19 can be predicted using WBSWBS can be used by employers to anticipate and mitigate work force absenteeismGraphical abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3