Ferroptosis Promotes Pulmonary Hypertension

Author:

Vogel Neal T.,Annis Jeffrey,Prisco Sasha Z.,Mancripe Natalia Laixto,Blake Madelyn L.,Brittain Evan L.,Prins Kurt W.ORCID,Kazmirczak Felipe

Abstract

AbstractBackgroundMitochondrial dysfunction, characterized by impaired lipid metabolism and heightened reactive oxygen species (ROS) generation, results in lipid peroxidation-induced ferroptosis. Ferroptosis is an inflammatory mode of cell death as it both promotes complement activation and recruits macrophages. In pulmonary arterial hypertension (PAH), pulmonary arterial endothelial cells exhibit disrupted lipid metabolism and increased ROS production, and there is ectopic complement deposition and inflammatory macrophage accrual in the surrounding vasculature. However, the integrative effects of ferroptosis on metabolism, cellular landscape changes in the lung, complement induction, and pulmonary vascular remodeling are unknown.MethodsMulti-omics analyses in rodents and a genetic association study in humans evaluated the role of ferroptosis in PAH.ResultsFerrostatin-1, a small-molecule ferroptosis inhibitor, mitigated PAH severity and improved right ventricular function in monocrotaline rats. RNA-seq and proteomics analyses demonstrated ferroptosis was induced with increasingly severe PAH. Metabolomics and proteomics data showed ferroptosis inhibition restructured lung metabolism and altered phosphatidylcholine and phosphatidylethanolamine levels. RNA-seq, proteomics, and confocal microscopy revealed complement activation and pro-inflammatory cytokines/chemokines were suppressed by ferrostatin-1. Additionally, ferrostatin-1 combatted changes in endothelial, smooth muscle, and interstitial macrophage abundances and gene activation patterns in the lungs as revealed by deconvolution RNA-seq. Finally, the presence of six single-nucleotide polymorphisms in ferroptosis genes were independently associated with pulmonary hypertension severity in the Vanderbilt BioVU repository.ConclusionsRodent and human data nominate ferroptosis as a PAH regulating pathway via its ability to modulate lung lipid metabolism, repress pathogenic complement activation, dampen interstitial macrophage infiltration, and restore the lung cellular environment.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3