The viral packaging motor potentiates late gene expression in Kaposi’s sarcoma-associated herpesvirus

Author:

McCollum Chloe O.,Didychuk Allison L.,Liu Dawei,Murray-Nerger Laura A.,Cristea Ileana M.,Glaunsinger Britt A.ORCID

Abstract

Abstractβ- and γ-herpesviruses transcribe their late genes in a manner distinct from host transcription. This process is directed by a complex of viral transcriptional activator proteins that hijack cellular RNA polymerase II and an unknown set of additional factors. We employed proximity labeling coupled with mass spectrometry, followed by CRISPR and siRNA screening to identify proteins functionally associated with the Kaposi’s sarcoma-associated herpesvirus (KSHV) late gene transcriptional complex. These data revealed that the catalytic subunit of the viral DNA packaging motor, ORF29, is both dynamically associated with the viral transcriptional activator complex and potentiates late gene expression. Through genetic mutation and deletion of ORF29, we establish that its catalytic activity potentiates viral transcription and is required for robust accumulation of essential late proteins during infection. Thus, we propose an expanded role for ORF29 that encompasses its established function in viral packaging and its newly discovered contributions to viral transcription and late gene expression in KSHV.Author summaryβ- and γ-herpesviruses express a class of genes essential for completion of the viral life cycle late during infection. A specialized complex of viral transcriptional activator proteins drives expression of these late genes in a manner dependent on viral genome replication, although the mechanisms and regulation of this process are largely unknown. Here, we identified factors that physically and functionally associate with the late gene transcription complex and unexpectedly found that the viral DNA packaging motor in Kaposi’s sarcoma-associated herpesvirus (KSHV) contributes to late gene expression. We show that the catalytic activity of this protein is not only required for genomic packaging but also for the robust expression of late genes to ensure the successful production of progeny virions. Thus, late gene transcription is mechanistically linked to the conserved processes of viral genome replication and packaging.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3