Secretion encoded single-cell sequencing (SEC-seq) uncovers gene expression signatures associated with high VEGF-A secretion in mesenchymal stromal cells

Author:

Udani Shreya,Langerman Justin,Koo Doyeon,Baghdasarian Sevana,Cheng Brian,Kang Simran,Soemardy Citradewi,de Rutte Joseph,Plath KathrinORCID,Di Carlo DinoORCID

Abstract

AbstractCells secrete numerous bioactive molecules essential for the function of healthy organisms. However, there are no scalable methods to link individual cell secretions to their transcriptional state. By developing and using secretion encoded single-cell sequencing (SEC-seq), which exploits hydrogel nanovials to capture individual cells and their secretions, we simultaneously measured the secretion of vascular endothelial growth factor A (VEGF-A) and the transcriptome for thousands of individual mesenchymal stromal cells (MSCs). We found that VEGF-A secretion is heterogeneous across the cell population and lowly correlated with theVEGFAtranscript level. While there is a modest population-wide increase in VEGF-A secretion by hypoxic induction, highest VEGF-A secretion across normoxic and hypoxic culture conditions occurs in a subpopulation of MSCs characterized by a unique gene expression signature. Taken together, SEC-seq enables the identification of specific genes involved in the control of secretory states, which may be exploited for developing means to modulate cellular secretion for disease treatment.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. Tissue-based map of the human proteome

2. Single-cell sorting based on secreted products for functionally defined cell therapies;Microsystems Nanoeng,2022

3. Levy, O. et al. Shattering barriers toward clinically meaningful MSC therapies. Sci. Adv. 6, (2020).

4. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration

5. Exploiting Single-Cell Tools in Gene and Cell Therapy;Front. Immunol,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3