Spectral signatures of cross-modal attentional control in the adolescent brain and their link with physical activity and aerobic fitness levels

Author:

Hernández DorisORCID,Kujala JanORCID,Heinilä ErkkaORCID,Ruotsalainen IlonaORCID,Lapinkero Hanna-Maija,Syväoja HeidiORCID,Parkkonen LauriORCID,Tammelin Tuija H.ORCID,Parviainen TiinaORCID

Abstract

AbstractTop–down attentional control seems to increase and suppress the activity of sensory cortices for relevant stimuli and to suppress activity for irrelevant ones. Higher physical activity (PA) and aerobic fitness (AF) levels have been associated with improved attention, but most studies have focused on unimodal tasks (e.g., visual stimuli only). The impact of higher PA or AF levels on the ability of developing brains to focus on certain stimuli while ignoring distractions remains unknown. The aim of this study was to examine the neural processes in visual and auditory sensory cortices during a cross-modal attention–allocation task using magnetoencephalography in 13–16-year-old adolescents (n= 51). During continuous and simultaneous visual (15 Hz) and auditory (40 Hz) noise-tagging stimulation, participants attended to either visual or auditory targets appearing on their left or right sides. High and low PA groups were formed based on seven-day accelerometer measurements, and high and low AF groups were determined based on the 20-m shuttle-run test. Steady-state (evoked) responses to the visual stimulus were observed in all the adolescents in the primary visual cortex, but some did not show responses in the primary auditory cortices to the auditory stimulus. The adolescents with auditory-tag-driven signals in the left temporal cortex were older than those who did not show responses. Visual cortices showed enhanced visual-tag-related activity with attention, but there was no cross-modal effect, perhaps due to the developmental effect observed in the temporal areas. The visual-tag-related responses in the occipital cortex were enhanced in the higher-PA group, irrespective of task demands. In summary, sensory cortices are unequally involved in cross-modal attention in the adolescent brain. This involvement seems to be enhanced by attention. Higher PA seems to be associated with a specific visual engagement benefit in the adolescent brain.Highlights- Visual and auditory cortices’ engagement differs in cross-modal processing in adolescence.- Adolescents with responses in the left temporal cortex are older than those without responses.- Physical activity, but not aerobic fitness, is associated with visual engagement benefits in the adolescent brain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3