GolpHCat (TMEM87A): a unique voltage-gated and pH-sensitive cation channel in the Golgi

Author:

Kang Hyunji,Jeong Heejin,Han Ah-reum,Koh Wuhyun,Lee Jung Moo,Jo Heeyoung,Lee Hayeon,Bhalla Mridula,Roh Woo Suk,Jang Hyun Jun,Lee Boyoung,Kim Ho Min,An Hyun JooORCID,Lee C. JustinORCID

Abstract

AbstractThe Golgi apparatus is a critical intracellular organelle that is responsible for modifying, packaging, and transporting proteins to their destinations. Golgi homeostasis involving the acidic pH, ion concentration, and membrane potential, is critical for proper functions and morphology of the Golgi. Although transporters and anion channels that contribute to Golgi homeostasis have been identified, the molecular identity of cation channels remains unknown. Here we identify TMEM87A as a novel Golgi-resident cation channel that contributes to pH homeostasis and rename it as GolpHCat (GolgipH-sensitiveCation channel). The genetic ablation of GolpHCat exhibits an impaired resting pH in the Golgi. Heterologously expressed GolpHCat displays voltage- and pH-dependent, non-selective cationic, and inwardly rectifying currents, with potent inhibition by gluconate. Furthermore, reconstitution of purified GolpHCat in liposomes generates functional channel activities with unique voltage-dependent gating and ion permeation. GolpHCat is expressed in various cell types such as neurons and astrocytes in the brain. In the hippocampus, GolpHCat-knockout mice show dilated Golgi morphology and altered glycosylation and protein trafficking, leading to impaired spatial memory with significantly reduced long-term potentiation. We elucidate that GolpHCat, by maintaining Golgi membrane potential, regulates ionic and osmotic homeostasis, protein glycosylation/trafficking, and brain functions. Our results propose a new molecular target for Golgi-related diseases and cognitive impairment.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3