Leading and Following: Noise Differently Affects Semantic and Acoustic Processing during Naturalistic Speech Comprehension

Author:

Zhang Xinmiao,Li JiaweiORCID,Li Zhuoran,Hong BoORCID,Diao Tongxiang,Ma Xin,Nolte Guido,Engel Andreas K.,Zhang DanORCID

Abstract

AbstractDespite the distortion of speech signals caused by unavoidable noise in daily life, our ability to comprehend speech in noisy environments is relatively stable. However, the neural mechanisms underlying reliable speech-in-noise comprehension remain to be elucidated. The present study investigated the neural tracking of acoustic and semantic speech information during noisy naturalistic speech comprehension. Participants listened to narrative audio recordings mixed with spectrally matched stationary noise at three signal-to-ratio (SNR) levels (no noise, 3 dB, -3 dB), and 60-channel electroencephalography (EEG) signals were recorded. A temporal response function (TRF) method was employed to derive event-related-like responses to the continuous speech stream at both the acoustic and the semantic levels. Whereas the amplitude envelope of the naturalistic speech was taken as the acoustic feature, word entropy and word surprisal were extracted via the natural language processing method as two semantic features. Theta-band frontocentral TRF responses to the acoustic feature were observed at around 400 ms following speech fluctuation onset over all three SNR levels, and the response latencies were more delayed with increasing noise. Delta-band frontal TRF responses to the semantic feature of word entropy were observed at around 200 to 600 ms leading to speech fluctuation onset over all three SNR levels. The response latencies became more leading with increasing noise and were correlated with comprehension performance and perceived speech intelligibility. While the following responses to speech acoustics were consistent with previous studies, our study revealed the robustness of leading responses to speech semantics, which suggests a possible predictive mechanism at the semantic level for maintaining reliable speech comprehension in noisy environments.HighlightsLeading responses were observed in the semantic-level neural tracking, with more leading latencies as noise increased.Following responses were observed in the acoustic-level neural tracking, with more delayed latencies as noise increased.Semantic-level neural tracking is correlated with comprehension performance and perceived intelligibility.Distinct frequency bands were involved in speech semantic and acoustic processing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3