Human dorsal root ganglia after plexus injury: either preservation or loss of the multicellular unit

Author:

Schulte AnnemarieORCID,Degenbeck Johannes,Aue Annemarie,Schindehütte Magnus,Schlott Felicitas,Schneider Max,Monoranu Camelia Maria,Bohnert Michael,Pham Mirko,Antoniadis Gregor,Blum Robert,Rittner Heike LORCID

Abstract

AbstractObjectivePlexus injury results in lifelong suffering of flaccid paralysis, sensory loss, and intractable pain. For this clinical problem, regenerative medicine concepts, such as cell replacement for restoring dorsal root ganglion (DRG) function, set high expectations. However, it is completely unclear which DRG cell types are affected by plexus injury.MethodsWe investigated the cellular composition of human DRG in a clinically characterized cohort of patients with plexus injury. Avulsed DRG of 13 patients were collected during reconstructive nerve surgery. Then, we analyzed the cellular composition of the DRG with a human-adapted objective deep learning-based analysis of large-scale microscopy images.ResultsSurprisingly, in about half of the patients, the injury-affected DRG no longer contained DRG cells. The complete entity of neurons, satellite glial cells, and microglia was lost and replaced by mesodermal/connective tissue. In the other half of patients, the cellular entity of the DRG was well preserved. We found no loss of neurons, no gliosis, and macrophages close to single sensory neuron/satellite glial cell entities. Patients with ‘neuronal preservation’ had less pain than patients with ‘neuronal loss’.InterpretationThe findings classify plexus injury patients in two categories: type I (neuronal preservation) and type II (neuronal loss). We call for early, post-accidental interventions to protect the entire DRG and improved MRI diagnostics to detect ‘neuronal loss’. Regenerative medicine to restore DRG function will need at least two translational directions: reafferentation of existing DRG units for type I injuries; or replacement of the entire DRG structure for type II patients.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3