HECTD1 is both a positive regulator and substrate of caspase-3 activity during apoptotic cell death

Author:

Scholz Nico,Siebzehnrubl FlorianORCID,Licchesi Julien D. FORCID

Abstract

AbstractProgrammed cell death is a complex and tightly regulated sequence of events that determines cell fate during tissue homeostasis, development, and pathogenesis. The small protein modifier ubiquitin mediates important regulatory functions during cell death by regulating the stability and activity of checkpoint proteins and the assembly of cell death signalling complexes. The caspase family of cysteine aspartases are essential effectors of apoptotic cell death. Components of the ubiquitin system including RING ubiquitin ligases XIAP, MDM2, RBX1; RBR E3 ubiquitin ligases Parkin and LUBAC; and HECT E3 ubiquitin ligases NEDD4 and Itch are also substrates of caspase-mediated cleavage. In the case of NEDD4 and Itch, the single cleavage event occurs outside of the catalytic HECT domain and it remains unclear whether such cleavage events impact on ubiquitin ligase activity and/or function. Here, we identified the E3 ubiquitin ligase HECTD1 as the third HECT E3 cleaved by caspase-mediated cleavage during apoptotic cell death, in a manner which does not affect the integrity of the catalytic C-ter HECT domain. We mapped the single cleavage event to DFLD1664↓S and showed that the cleaved C-ter product, which contains the HECT ligase domain, is as stable as the endogenous full length protein. We also found that HECTD1 transient depletion led to reduced caspase-3 activity, but not caspase 8 nor 9. Furthermore, we also identified caspase-3 as the protease responsible for HECTD1 cleavage at Asp1664 suggesting that HECTD1 and caspase-3 might be part of a novel feedback loop mechanism during apoptotic cell death. This study highlight novel crosstalk between cell death mechanisms and the ubiquitin system and raises important questions on whether proteolytic cleavage of E3 ubiquitin ligases might represent an underappreciated mode of regulation during cell death mechanisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3