EnCPdock: a web-interface for direct conjoint comparative analyses of complementarity and binding energetics in inter-protein associations

Author:

Biswas GargiORCID,Mukherjee DebasishORCID,Dutta NalokORCID,Ghosh PrithwiORCID,Basu SankarORCID

Abstract

AbstractContextProtein-protein interaction (PPI) is a key component linked to virtually all cellular processes. Be it an enzyme catalysis (‘classic type functions’ of proteins) or a signal transduction (‘non-classic’), proteins generally function involving stable or quasi-stable multi-protein associations. The physical basis for such associations is inherent in the combined effect of shape and electrostatic complementarities (Sc, EC) of the interacting protein partners at their interface, which provides indirect probabilistic estimates of the stability and affinity of the interaction. While Sc is a necessary criterion for inter-protein associations, EC can be favorable as well as disfavored (e.g., in transient interactions). Estimating equilibrium thermodynamic parameters (ΔGbinding, Kd) by experimental means is costly and time consuming, thereby opening windows for computational structural interventions. Attempts to empirically probe ΔGbindingfrom coarse-grain structural descriptors (primarily, surface area based terms) have lately been overtaken by physics-based, knowledge-based and their hybrid approaches (MM/PBSA, FoldX etc.) that directly compute ΔGbindingwithout involving intermediate structural descriptors.MethodsHere we present EnCPdock (www.scinetmol.in/EnCPdock/), a user-friendly web-interface for the direct conjoint comparative analyses of complementarity and binding energetics in proteins. EnCPdock returns an AI-predicted ΔGbindingcomputed by combining complementarity (Sc, EC) and other high-level structural descriptors (input feature vectors), and, renders a prediction accuracy comparable to the state-of-the-art. EnCPdock further locates a PPI complex in terms of its {Sc, EC} values (taken as an ordered pair) in the two-dimensional Complementarity Plot (CP). In addition, it also generates mobile molecular graphics of the interfacial atomic contact network for further analyses. EnCPdock also furnishes individual feature trends along with the relative probability estimates (Prfmax) of the obtained feature-scores with respect to the events of their highest observed frequencies. Together, these functionalities are of real practical use for structural tinkering and intervention as might be relevant in the design of targeted protein-interfaces. Combining all its features and applications, EnCPdock presents a unique online tool that should be beneficial to structural biologists and researchers across related fraternities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3