BOLD response is more than just magnitude: improving detection sensitivity through capturing hemodynamic profiles

Author:

Chen GangORCID,Taylor Paul A.,Reynolds Richard C.,Leibenluft Ellen,Pine Daniel S.,Brotman Melissa A.,Pagliaccio David,Haller Simone P.

Abstract

AbstractTypical FMRI analyses assume a canonical hemodynamic response function (HRF) with a focus on the overshoot peak height, while other morphological aspects are largely ignored. Thus, in most reported analyses, the overall effect is reduced from a curve to a single scalar. Here, we adopt a data-driven approach to HRF estimation at the whole-brain voxel level, without assuming a response profile at the individual level. Then, we estimate the response in its entirety with a roughness penalty at the population level to improve predictive accuracy, inferential efficiency, and cross-study reproducibility. Using a fast event-related FMRI dataset, we demonstrate the extent of under-fitting and information loss that occurs when adopting the canonical approach. We also address the following questions:How much does the HRF shape vary across regions, conditions, and groups?Does an agnostic approach improve sensitivity to detect an effect compared to an assumed HRF?Can examining HRF shape help validate the presence of an effect complementing statistical evidence?Could the HRF shape provide evidence for whole-brain BOLD response during a simple task?

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3