Enhanced protein secretion in reduced genome strains ofStreptomyces lividans

Author:

Hamed M. B.,Busche T.,Simoens K.,Carpentier S.,Kormanec J.,Van Mellaert L.,Anné J.,Kalinowski J.,Bernaerts K.,Karamanou S.,Economou A.ORCID

Abstract

AbstractS. lividansTK24 is a popular host for the production of small molecules and for the secretion of heterologous proteins. TK24 has a large genome with at least 29 secondary metabolite gene clusters that are non-essential for viability and undergo complex regulation. To optimize heterologous protein secretion, we previously constructed ten chassis strains that are devoid of several secondary metabolite gene clusters. Genome reduction was aimed at reducing carbon flow to secondary metabolites and pigmentation in the spent growth medium and improving colony morphology. Strains RG1.0-RG1.10 contain various deletion combinations of the blue actinorhodin cluster (act), the calcium-dependent antibiotic (cda), the undecylprodigiosin (red) and coelimycin A (cpk) clusters, the melanin cluster (mel), thematAB genes that affect mycelial aggregation and the non-essential sigma factorhrdD that controls the transcription of Act and Red regulatory proteins. Two derivative strains, RG1.5 and 1.9, showed a ∼15% reduction in growth rate, >2-fold increase in the total mass yield of their native secretome and altered abundance of several specific proteins compared with TK24. Metabolomics and RNAseq analysis revealed that genome reduction led to rapid cessation of growth due to aminoacid depletion and caused both redox and cell envelope stresses, upregulation of the Sec-pathway componentssecDFand chaperones and a cell envelope two component regulator. RG1.9 maintained elevated heterologous secretion of mRFP and mTNFα by 12-70%. An integrated model is presented linking genome reduction and enhanced secretion.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3