Cell-autonomous metabolic reprogramming and oxidative stress underlie endothelial dysfunction in acute myocardial infarction

Author:

Zodda ErikaORCID,Tura-Ceide OlgaORCID,Mills Nicholas L.ORCID,Tarragó-Celada JosepORCID,Carini MarinaORCID,Thomson Timothy MORCID,Cascante MartaORCID

Abstract

AbstractCompelling evidence has accumulated for the role of oxidative stress on the endothelial cell (EC) dysfunction underlying acute coronary syndromes. However, understanding the metabolic determinants of EC dysfunction has been hampered by the scarcity of appropriate cell models. Here, we have generated and phenotypically characterized EC derived from thrombectomy specimens in patients with acute myocardial infarction (AMI). We have found that AMI-derived endothelial cells (AMIECs), but not control EC from health coronary arteries, display impaired growth, migration and tubulogenesis. These phenotypic abnormalities were accompanied with metabolic abnormalities including augmentation of reactive oxygen species (ROS) and glutathione intracellular content, along with diminished glucose consumption coupled to increased lactate production. In AMIECs, the protein levels of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase type 3, PFKFB3, were downregulated, while those of PFKFB4 were upregulated, suggesting a shunting of glycolysis towards the pentose phosphate pathway (PPP) in the pathological ECs. PPP overactivation was further supported by upregulation of G6PD in AMIECs, the key enzyme in the oxidative branch of the PPP, which supplies the bulk of NADPH reducing equivalents necessary for the reduction/turnover and lipid synthesis.. Further, the glutaminolytic enzyme glutaminase (GLS) was upregulated in AMIECs, providing a mechanistic explanation for the observed increase in glutathione content. Finally, AMIECs had higher mitochondrial membrane potential than control ECs, which, together with high ROS levels, suggest a highly coupled mitochondrial activity in patient ECs. We suggest that high proton coupling underlies the abnormally high production of ROS, balanced by PPP-driven glutathione turnover, as a primary, cell-autonomous abnormality driving EC dysfunction in AMI.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3