Dual-systems models of the genetic architecture of impulsive personality traits: Neurogenetic evidence of distinct but related factors

Author:

Miller Alex P.ORCID,Gizer Ian R.ORCID

Abstract

AbstractBackgroundDual-systems models provide a parsimonious framework for understanding the interplay between cortical and subcortical brain regions relevant to impulsive personality traits (IPTs) and their associations with psychiatric disorders. Despite recent developments in multivariate analysis of genome-wide association studies (GWAS), molecular genetic investigations of these models have not been conducted.MethodsUsing extant IPT GWAS, we conducted confirmatory genomic structural equation models (GenomicSEM) to empirically evaluate dual-systems models of the genetic architecture of IPTs. Genetic correlations between results of multivariate GWAS of dual-systems factors and GWAS of relevant cortical and subcortical neuroimaging phenotypes (regional/structural volume, cortical surface area, cortical thickness) were calculated and compared.ResultsEvaluation of GenomicSEM model fit indices for dual-systems models suggested that these models highlight important sources of shared and unique genetic variance between top-down and bottom-up constructs. Specifically, a dual-systems genomic model consisting of sensation seeking and lack of self-control factors demonstrated distinct but related sources of genetic influences (rg=.60). Genetic correlation analyses provided evidence of differential associations between dual-systems factors and cortical neuroimaging phenotypes (e.g., lack of self-control negatively associated with cortical thickness, sensation seeking positively associated with cortical surface area). However, no significant associations were observed for subcortical phenotypes inconsistent with hypothesized functional localization of dual-systems constructs.ConclusionsDual-systems models of the genetic architecture of IPTs tested here demonstrate evidence of shared and unique genetic influences and associations with relevant neuroimaging phenotypes. These findings emphasize potential advantages in utilizing dual-systems models to study genetic influences for IPTs and transdiagnostic associations with psychiatric disorders.

Publisher

Cold Spring Harbor Laboratory

Reference89 articles.

1. A new look at the statistical model identification

2. Trait impulsivity and the externalizing spectrum;Annual Review of Clinical Psychology,2017

3. Resource profile and user guide of the Polygenic Index Repository;Me Research Group;Nature Human Behaviour,2021

4. Comparative fit indexes in structural models.

5. Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: Multivariate Software.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3