Reinforcement-Based Processes Actively Regulate Motor Exploration Along Redundant Solution Manifolds

Author:

Roth Adam M.,Calalo Jan A.,Lokesh Rakshith,Sullivan Seth R.,Grill Stephen,Jeka John J.,van der Kooij Katinka,Carter Michael J.,Cashaback Joshua G. A.

Abstract

ABSTRACTFrom a baby’s babbling to a songbird practicing a new tune, exploration is critical to motor learning. A hallmark of exploration is the emergence of random walk behaviour along solution manifolds, where successive motor actions are not independent but rather become serially dependent. Such exploratory random walk behaviour is ubiquitous across species, neural firing, gait patterns, and reaching behaviour. Past work has suggested that exploratory random walk behaviour arises from an accumulation of movement variability and a lack of error-based corrections. Here we test a fundamentally different idea—that reinforcement-based processes regulate random walk behaviour to promote continual motor exploration to maximize success. Across three human reaching experiments we manipulated the size of both the visually displayed target and an unseen reward zone, as well as the probability of reinforcement feedback. Our empirical and modelling results parsimoniously support the notion that exploratory random walk behaviour emerges by utilizing knowledge of movement variability to update intended reach aim towards recently reinforced motor actions. This mechanism leads to active and continuous exploration of the solution manifold, currently thought by prominent theories to arise passively. The ability to continually explore muscle, joint, and task redundant solution manifolds is beneficial while acting in uncertain environments, during motor development, or when recovering from a neurological disorder to discover and learn new motor actions.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3