Label-free differential imaging of cellular components in mouse brain tissue by wide-band photoacoustic microscopy

Author:

Liu Yajing,Wong Terence T WORCID,Shi Junhui,He Yun,Nie LimingORCID,Wang Lihong V.

Abstract

AbstractMapping diverse cellular components with high spatial resolution is important to interrogate biological systems and study disease pathogenesis. Conventional optical imaging techniques for mapping biomolecular profiles with differential staining and labeling methods are cumbersome. Different types of cellular components exhibit distinctive characteristic absorption spectra across a wide wavelength range. By virtue of this property, a lab-made wide-band optical-resolution photoacoustic microscopy (wbOR-PAM) system, which covers wavelengths from the ultraviolet and visible to the shortwave infrared regions, was designed and developed to capture multiple cellular components in 300-μm-thick brain slices at nine different wavelengths without repetitive staining and complicated processing. This wbOR-PAM system provides abundant spectral information. A reflective objective lens with an infinite conjugate design was applied to focus laser beams with different wavelengths, avoiding chromatic aberration. The molecular components of complex brain slices were probed without labeling. The findings of the present study demonstrated a distinctive absorption of phospholipids, a major component of the cell membrane, brain, and nervous system, at 1690 nm and revealed their precise distribution with microscopic resolution in a mouse brain, for the first time. This novel imaging modality provides a new opportunity to investigate important biomolecular components without either labeling or lengthy specimen processing, thus, laying the groundwork for revealing cellular mechanisms involved in disease pathogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3