Revealing the combined roles of Aβ and tau in Alzheimer’s disease via a pathophysiological activity decoder
Author:
Sanchez-Rodriguez Lazaro M., Bezgin Gleb, Carbonell Felix, Therriault Joseph, Fernandez-Arias Jaime, Servaes Stijn, Rahmouni Nesrine, Tissot CecileORCID, Stevenson Jenna, Karikari Thomas K.ORCID, Ashton Nicholas J., Benedet Andréa L., Zetterberg Henrik, Blennow Kaj, Triana-Baltzer Gallen, Kolb Hartmuth C., Rosa-Neto PedroORCID, Iturria-Medina YasserORCID
Abstract
AbstractNeuronal dysfunction and cognitive deterioration in Alzheimer’s disease (AD) are likely caused by multiple pathophysiological factors. However, evidence in humans remains scarce, necessitating improved non-invasive techniques and integrative mechanistic models. Here, we introduce personalized brain activity models incorporating functional MRI, amyloid-β (Aβ) and tau-PET from AD-related participants (N=132). Within the model assumptions, electrophysiological activity is mediated by toxic protein deposition. Our integrative subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP). Furthermore, our results reproduce hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
Publisher
Cold Spring Harbor Laboratory
Reference88 articles.
1. Abeysuriya, R. G. , Hadida, J. , Sotiropoulos, S. N. , Jbabdi, S. , Becker, R. , Hunt, B. A. E. , Brookes, M. J. , & Woolrich, W. (2018). A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks. 2. Adewale, Q. , Khan, A. F. , Carbonell, F. , & Iturria-Medina, Y . (2021). Integrated transcriptomic and neuroimaging brain model decodes biological mechanisms in aging and Alzheimer’s disease. ELife, 10. https://doi.org/10.7554/eLife.62589 3. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest;NeuroImage,2020 4. A fast diffeomorphic image registration algorithm 5. Ashton, N. J. , Janelidze, S. , Mattsson-Carlgren, N. , Binette, A. P. , Strandberg, O. , Brum, W. S. , Karikari, T. K. , González-Ortiz, F. , di Molfetta, G. , Meda, F. J. , Jonaitis, E. M. , Koscik, R. L. , Cody, K. , Betthauser, T. J. , Li, Y. , Vanmechelen, E. , Palmqvist, S. , Stomrud, E. , Bateman, R. J. , … Hansson, O. (2022). Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring. Nature Medicine. https://doi.org/10.1038/s41591-022-02074-w
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|