Chemistry of Concerto Molecular Catalysis Based on the Metal/NH Bifunctionality

Author:

Ikariya Takao1

Affiliation:

1. Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology

Abstract

Abstract The development of conceptually new bifunctional transition-metal-based catalysts for a wide range of catalytic reactions is described. The bifunctional chiral molecular catalyst based on metal–ligand cooperation was originally developed for asymmetric transfer hydrogenation of ketones and imines and is now applicable to chemo- and stereoselective reductive and oxidative transformations as well as to enantioselective C–C and C–N bond formations with a wide scope and high practicability. The structural modification and electronic fine-tuning of the protic amine chelating ligands are crucial to develop unprecedented catalytic reactions. Cp*Ru complexes bearing a diamine (N–N) or aminophosphine (P–N) ligand readily activate H2, and can effect hydrogenation of polar functionalities. The bifunctional Ir complexes promote aerobic oxidative transformation of alcohols into ketones and esters and are applicable to kinetic resolution of racemic secondary alcohols. A novel imido-bridged dirhodium complex, which is a dinuclear variant of the bifunctional mononuclear amido complexes, promotes aerobic oxidation of a secondary alcohol and H2. In addition, the metal/NH bifunctional property also affects efficiently enantioselective conjugate additions. The present concerto molecular catalysts offer a great opportunity to open up new fundamentals for stereoselective molecular transformations.

Publisher

Oxford University Press (OUP)

Reference110 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3