A Similarity Measure-based Optimization Model for Group Decision Making with Multiplicative and Fuzzy Preference Relations

Author:

Chao Xiangrui,Peng Yi,Kou Gang

Abstract

Group decision making (GDM) problem based on different preference relations aims to obtain a collective opinion based on various preference structures provided by a group of decision makers (DMs) or experts, those who have varying backgrounds and interests in real world. The decision process in proposed question includes three steps: integrating varying preference structures, reaching consensus opinion, selecting the best alternative. Two major approaches: preference transformation and optimization methods have been developed to deal with the issue in first step. However, the transformation processes causes information lose and existing optimization methods are so computationally complex that it is not easy to be used by management practice. This study proposes a new consistency-based method to integrate multiplicative and fuzzy preference relations, which is based on a cosine similarity measure to derive a collective priority vector. The basic idea is that a collective priority vector should be as similar per column as possible to a pairwise comparative matrix (PCM) in order to assure the group preference has highest consistency for each decision makers. The model is computationally simple, because it can be solved using a Lagrangian approach and obtain a collective priority vector following four simple steps. The proposed method can further used to derive priority vector of fuzzy AHP. Using three illustrative examples, the effectiveness and simpleness of the proposed model is demonstrated by comparison with other methods. The results show that the proposed model achieves the largest cosine values in all three examples, indicating the solution is the nearest theoretical perfectly consistent opinion for each decision makers.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3