Comparative analyses reveal potential genetic mechanisms for high-altitude adaptation of Schizopygopsis fishes based on chromosome-level genomes

Author:

Zhou Chuang123ORCID,Wang Xiaodong1,Hu Zhengrui1,Chen Qian1,Du Chao4,Liu Yi5,Song Zhaobin123

Affiliation:

1. Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University , Chengdu , China

2. Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University , Chengdu , China

3. Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University , Chengdu , China

4. Baotou Teachers College , Baotou , China

5. Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University , Neijiang , China

Abstract

Abstract The schizothoracine fishes, widely distributed in the Qinghai-Tibetan Plateau and its adjacent areas, are considered as ideal models for investigation of high-altitude adaptation. Schizophygopsis are one group of the highly specialized schizothoracine fishes, and the genetic basis for their high-altitude adaptation is poorly understood. In this study, we performed comparative genomics analyses to investigate the potential genetic mechanisms for high-altitude adaptation of Schizopygopsis malacanthus and Schizopygopsis pylzovi based on the chromosome-level genomes. Functional enrichment analysis revealed that many expanded gene families in Schizopygopsis were associated with immune response while many contracted gene families were functionally associated with olfaction. Among the 123 positively selected genes (PSGs), angpt2a was detected in HIF-1 signaling pathway and possibly related to the hypoxia adaptation of Schizopygopsis. Furthermore, two PSGs cox15 and ndufb10 were distributed in thermogenesis, and there was a Schizopygopsis-specific missense mutation in cox15 (Gln115Glu), which possibly contributed to the cold temperature adaptation of the Schizopygopsis. Kyoto Encyclopedia of Genes and Genomes enrichment of the PSGs revealed three significant pathways including metabolic pathways, cell cycle, and homologous recombination and Gene Ontology enrichment analysis of the PSGs revealed several categories associated with DNA repair, cellular response to DNA damage stimulus, and metabolic process. Chromosome-scale characterization of olfactory receptor (OR) repertoires indicated that Schizopygopsis had the least number of OR genes, and the OR gene contraction was possibly caused by the limited food variety and the environmental factors such as lower air pressure, lower humidity, and lower temperature. Our study will help expand our understanding of the potential adaptive mechanism of Schizopygopsis to cope with the high-altitude conditions.

Funder

Sichuan University

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,Biotechnology

Reference58 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3