High Frequency of Multiple Paternity in Eastern Red Bats, Lasiurus borealis, Based on Microsatellite Analysis

Author:

Ammerman Loren K1,Lee Dana N2,Jones Brittney A2,Holt Morgan P2,Harrison Samuel J1,Decker Sydney K1

Affiliation:

1. Department of Biology, ASU Station #10890, Angelo State University, San Angelo, TX

2. Department of Agriculture, Biology, and Health Sciences, West Gore Boulevard, Cameron University, Lawton, OK

Abstract

Abstract Most species of bats give birth to only 1 pup each year, although Eastern red bats (Lasiurus borealis) can produce up to 5 pups per litter. Offspring in a single litter have been documented to be at different stages of development, suggesting that multiple paternity occurs. We tested the null hypothesis of genetic monogamy in red bats using 6 autosomal microsatellites and 1 X-linked microsatellite from 31 parent/offspring groups for a total of 128 bats. We sampled both pregnant females and mothers with pups that were obtained from bats submitted to departments of health in Oklahoma and Texas for rabies testing. Multiple paternity was assessed using a maximum-likelihood approach, hypothesis testing, and X-linked locus exclusion. The mean polymorphic information content of our markers was high (0.8819) and combined non-exclusion probability was low (0.00027). Results from the maximum-likelihood approach showed that 22 out of 31 (71%) parent/offspring groups consisted of half siblings, hypothesis testing rejected full sibship in 61% of parent/offspring groups, and X-linked locus exclusion suggested multiple paternity in at least 12 parent/offspring groups, rejecting our hypothesis of genetic monogamy. This frequency of multiple paternity is the highest reported thus far for any bat species. High levels of multiple paternity have the potential to impact interpretations of genetic estimates of effective population size in this species. Further, multiple paternity might be an adaptive strategy to allow for increased genetic variation and large litter size, which would be beneficial to a species threatened by population declines from wind turbines.

Funder

Angelo State University Faculty Research Enhancement Program

Dr. Bobby Gene Vowell Endowed Lectureship

Cameron University

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3