Exciting Advances in Sustainable Spectrophotometric Micro-Quantitation of an Innovative Painkiller “Tramadol and Celecoxib” Mixture in the Presence of a Toxic Impurity, Promoting Greenness and Whiteness Studies

Author:

Bahgat Eman A1ORCID,Hashem Hisham1ORCID,Saleh Hanaa1ORCID,Kamel Ebraam B2ORCID,Eissa Maya S2ORCID

Affiliation:

1. Zagazig University, Faculty of Pharmacy, Pharmaceutical Analytical Chemistry Department , 44519 Zagazig, Egypt

2. Egyptian Russian University, Faculty of Pharmacy, Pharmaceutical Chemistry Department , Badr City, 11829 Cairo, Egypt

Abstract

Abstract Background Tramadol (TRM) and celecoxib (CLX) form a novel mixture that helps relieve acute pain when other painkillers have no action. It is also reported that these drugs, TRM and CLX, are used to control COVID-19 symptoms. Objective The current work highlights three important pillars of modern pharmaceutical analysis, which are as follows; impurity profiling, greenness/whiteness studies and simplicity accompanied by sensitivity. Since 4-methyl acetophenone inhibits the human carbonyl reductase enzyme (type I) and since this compound may pose a health risk, it is crucial to regulate its concentration in all dosage forms of CLX. Methods Two simple and green spectrophotometric methods were developed, namely third derivative (D3) and Fourier self- deconvulation (FSD), for resolving severely overlapped spectra of TRM and CLX in the presence of 4-methyl acetophenone (4-MAP) as a process-related impurity in their novel tablet combination. Results The two approaches showed acceptable linearity with an excellent correlation coefficient. In both methods, TRM was measured when CLX and 4-methyl acetophenone were zero-crossing. The same procedure was applied for measuring CLX and its process-related impurity 4-MAP. Conclusion The methodologies developed were thoroughly validated in compliance with ICH (International Council on Harmonisation) guidelines. Student t- and F-tests revealed no statistically significant variation among the current methods and the reported method. Highlights No spectrophotometric methods have been published previously for the simultaneous analysis of TRM and CLX along with 4-MAP. As a result, the newly developed spectrophotometric approaches have great relevance and originality in the field of pharmaceutical analysis.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3