TLC–MS-Bioautographic Identification of Antityrosinase Compounds and Preparation of a Topical Gel Formulation from a Bioactive Fraction of an RSM-Optimized Alcoholic Extract of Rubia Cordifolia L. stem

Author:

Insaf Areeba1,Parveen Rabea12,Srivastava Varsha1,Samal Monalisha1,Khan Muzayyana1,Ahmad Sayeed1ORCID

Affiliation:

1. Jamia Hamdard, Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research , New Delhi 110062, India

2. Jamia Hamdard, Department of Pharmaceutics, School of Pharmaceutical Education & Research , New Delhi 110062, India

Abstract

Abstract Background Rubia cordifolia L., Rubiaceae, is globally reported to treat skin-related problems. The study aimed to assess the antityrosinase potential of Rubia cordifolia (ARC) and the development of gel formulation. Methods The AutoDock Vina (version V.1.2.0) program package was used for molecular docking to check for the binding affinity of ligands with protein. Response surface methodology (RSM) software was used to optimize extraction parameters for an alcoholic extract of Rubia cordifolia (ARC). The developed HPTLC method for the quantification of purpurin in ARC was validated as per the International Conference on Harmonization (ICH) guidelines. A bioautographic study for the evaluation of antityrosinase effects was performed; an anthraquinone-enriched fraction (AEF)-loaded gel formulation developed and evaluated physicochemically which could be used to reduce skin pigmentation. Results Purpurin showed optimum binding affinity (−7.4 kcal/mol) with the molecular target (tyrosinase) when compared to that of standard kojic acid (−5.3 kcal/mol). Quantification of purpurin in ARC, optimized by RSM software, was validated and physiologically significant results were observed for the antityrosinase potential of an AEF, along with TLC–MS-bioautographic identification for antityrosinase compounds: purpurin (m/z 256.21) and ellagic acid (m/z 302.19). Evaluation of an AEF-loaded gel formulation by in vitro and ex vivo permeation studies was performed. Conclusion ARC extraction parameters optimized by RSM, and a bioautographic study helped identify antityrosinase compounds. The development of a gel formulation could be a cost-effective option for the treatment of depigmentation in the future. Highlights A TLC–MS-Bioautography-based Identification of Antityrosinase Compounds and development of AEF-loaded Topical Gel formulation from a Bioactive Fraction of an RSM-Optimized Alcoholic Extract of Rubia Cordifolia L. stem, which could help with promising results in reducing skin pigmentation and maintaining even tone.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3