Affiliation:
1. Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Norway
Abstract
Abstract
Recent genomic studies have highlighted the importance of hybridization and gene exchange in evolution. We ask what factors cause variation in the impact of hybridization, through adaptation in hybrids and the likelihood of hybrid speciation. During speciation, traits that diverge due to both divergent and stabilizing selection can contribute to the buildup of reproductive isolation. Divergent directional selection in parent taxa should lead to intermediate phenotypes in hybrids, whereas stabilizing selection can also produce extreme, transgressive phenotypes when hybridization occurs. By examining existing theory and empirical data, we discuss how these effects, combined with differences between modes of divergence in the chromosomal distribution of incompatibilities, affect adaptation and speciation in hybrid populations. The result is a clear and testable set of predictions that can be used to examine hybrid adaptation and speciation. Stabilizing selection in parents increases transgression in hybrids, increasing the possibility for novel adaptation. Divergent directional selection causes intermediate hybrid phenotypes and increases their ability to evolve along the direction of parental differentiation. Stabilizing selection biases incompatibilities towards autosomes, leading to reduced sexual correlations in trait values and reduced pleiotropy in hybrids, and hence increased freedom in the direction of evolution. Directional selection causes a bias towards sex-linked incompatibilities, with the opposite consequences. Divergence by directional selection leads to greater dominance effects than stabilizing selection, with major but variable impacts on hybrid evolution.
Publisher
Oxford University Press (OUP)
Subject
Animal Science and Zoology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献