Hybridization and genome evolution II: Mechanisms of species divergence and their effects on evolution in hybrids

Author:

Bailey Richard I.1,Eroukhmanoff Fabrice1,Sætre Glenn-Peter1

Affiliation:

1. Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Norway

Abstract

Abstract Recent genomic studies have highlighted the importance of hybridization and gene exchange in evolution. We ask what factors cause variation in the impact of hybridization, through adaptation in hybrids and the likelihood of hybrid speciation. During speciation, traits that diverge due to both divergent and stabilizing selection can contribute to the buildup of reproductive isolation. Divergent directional selection in parent taxa should lead to intermediate phenotypes in hybrids, whereas stabilizing selection can also produce extreme, transgressive phenotypes when hybridization occurs. By examining existing theory and empirical data, we discuss how these effects, combined with differences between modes of divergence in the chromosomal distribution of incompatibilities, affect adaptation and speciation in hybrid populations. The result is a clear and testable set of predictions that can be used to examine hybrid adaptation and speciation. Stabilizing selection in parents increases transgression in hybrids, increasing the possibility for novel adaptation. Divergent directional selection causes intermediate hybrid phenotypes and increases their ability to evolve along the direction of parental differentiation. Stabilizing selection biases incompatibilities towards autosomes, leading to reduced sexual correlations in trait values and reduced pleiotropy in hybrids, and hence increased freedom in the direction of evolution. Directional selection causes a bias towards sex-linked incompatibilities, with the opposite consequences. Divergence by directional selection leads to greater dominance effects than stabilizing selection, with major but variable impacts on hybrid evolution.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3