In vitro and in vivo activities of imipenem combined with BLI-489 against class D β-lactamase-producing Acinetobacter baumannii

Author:

Wang Yung-Chih1,Huang Shu-Wei23,Chiang Ming-Hsien4,Lee I-Ming5,Kuo Shu-Chen6ORCID,Yang Ya-Sung1,Chiu Chun-Hsiang1,Su Ying-Shih7,Chen Te-Li89,Wang Fu-Der1011,Lee Yi-Tzu211ORCID

Affiliation:

1. Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan

2. Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan

3. Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan

4. Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan

5. Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan

6. National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan

7. Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan

8. Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan

9. Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan

10. Division of Infectious Diseases, Taipei Veterans General Hospital, Taipei, Taiwan

11. Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan

Abstract

Abstract Background According to our preliminary study, BLI-489 has the potential to inhibit the hydrolysing activity of OXA-51-like β-lactamase produced by carbapenem-resistant Acinetobacter baumannii (CRAb). Objectives In the present study, the in vitro and in vivo activities of imipenem combined with BLI-489 against CRAb producing carbapenem-hydrolysing class D β-lactamases (CHDLs), namely OXA-23, OXA-24, OXA-51 and OXA-58, were determined. Methods A chequerboard analysis of imipenem and BLI-489 was performed using 57 and 7 clinical CRAb isolates producing different CHDLs and MBLs, respectively. Four representative strains harbouring different CHDL genes were subjected to a time–kill assay to evaluate the synergistic effects. An in silico docking analysis was conducted to simulate the interactions between BLI-489 and the different families of CHDLs. The in vivo activities of this combination were assessed using a Caenorhabditis elegans survival assay and a mouse pneumonia model. Results Chequerboard analysis showed that imipenem and BLI-489 had a synergistic effect on 14.3, 92.9, 100, 16.7 and 100% of MBL-, OXA-23-, OXA-24-like-, OXA-51-like- and OXA-58-producing CRAb isolates, respectively. In the time–kill assay, imipenem and BLI-489 showed synergy against OXA-24-like-, OXA-51-like- and OXA-58-, but not OXA-23-producing CRAb isolates after 24 h. The in silico docking analysis showed that BLI-489 could bind to the active sites of OXA-24 and OXA-58 to confer strong inhibition activity. The combination of imipenem and BLI-489 exhibited synergistic effects for the rescue of CRAb-infected C. elegans and mice. Conclusions Imipenem combined with BLI-489 has synergistic effects against CHDL-producing CRAb isolates.

Funder

Taipei Veterans General Hospital

Tri-Service General Hospital

Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3