Development and validation of a UHPLC-MS/MS method for quantification of the prodrug remdesivir and its metabolite GS-441524: a tool for clinical pharmacokinetics of SARS-CoV-2/COVID-19 and Ebola virus disease

Author:

Avataneo Valeria1,de Nicolò Amedeo1ORCID,Cusato Jessica1ORCID,Antonucci Miriam1,Manca Alessandra1,Palermiti Alice1,Waitt Catriona23,Walimbwa Stephen3,Lamorde Mohammed3,di Perri Giovanni14,D’Avolio Antonio14

Affiliation:

1. Laboratory of Clinical Pharmacology and Pharmacogenetics, Amedeo di Savoia Hospital, Department of Medical Sciences, University of Turin, Turin, Italy

2. Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK

3. Infectious Diseases Institute, Makerere University College of Health Sciences, P.O. Box 22418, Kampala, Uganda

4. CoQua Lab, Turin, Italy

Abstract

Abstract Background Remdesivir has received significant attention for its potential application in the treatment of COVID-19, caused by SARS-CoV-2. Remdesivir has already been tested for Ebola virus disease treatment and found to have activity against SARS and MERS coronaviruses. The remdesivir core contains GS-441524, which interferes with RNA-dependent RNA polymerases alone. In non-human primates, following IV administration, remdesivir is rapidly distributed into PBMCs and converted within 2 h to the active nucleoside triphosphate form, while GS-441524 is detectable in plasma for up to 24 h. Nevertheless, remdesivir pharmacokinetics and pharmacodynamics in humans are still unexplored, highlighting the need for a precise analytical method for remdesivir and GS-441524 quantification. Objectives The validation of a reliable UHPLC-MS/MS method for remdesivir and GS-441524 quantification in human plasma. Methods Remdesivir and GS-441524 standards and quality controls were prepared in plasma from healthy donors. Sample preparation consisted of protein precipitation, followed by dilution and injection into the QSight 220 UHPLC-MS/MS system. Chromatographic separation was obtained through an Acquity HSS T3 1.8 μm, 2.1 × 50 mm column, with a gradient of water and acetonitrile with 0.05% formic acid. The method was validated using EMA and FDA guidelines. Results Analyte stability has been evaluated and described in detail. The method successfully fulfilled the validation process and it was demonstrated that, when possible, sample thermal inactivation could be a good choice in order to improve biosafety. Conclusions This method represents a useful tool for studying remdesivir and GS-441524 clinical pharmacokinetics, particularly during the current COVID-19 outbreak.

Funder

European Union

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3