DnaK2 Mediates a Negative Feedback Regulation of the Heat Shock Responsive Hik2-Rre1 Two-Component System in the Cyanobacterium Synechococcus Elongatus PCC 7942

Author:

Hasegawa Hazuki12,Kobayashi Ikki1ORCID,Bairagi Nachiketa2,Watanabe Satoru3ORCID,Tanaka Kan1ORCID

Affiliation:

1. Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama, 226-8501 Japan

2. School of Life Science and Technology, Tokyo Institute of Technology , Yokohama, 226-8501 Japan

3. Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku , Tokyo, 156-8502 Japan

Abstract

Abstract The two-component system (TCS) is a conserved signal transduction module in bacteria. The Hik2-Rre1 system is responsible for transcriptional activation upon high-temperature shift as well as plastoquinone-related redox stress in the cyanobacterium Synechococcus elongatus PCC 7942. As heat-induced de novo protein synthesis was previously shown to be required to quench the heat-activated response, we investigated the underlying mechanism in this study. We found that the heat-inducible transcription activation was alleviated by the overexpression of dnaK2, which is an essential homolog of the highly conserved HSP70 chaperone and whose expression is induced under the control of the Hik2-Rre1 TCS. Phosphorylation of Rre1 correlated with transcription of the regulatory target hspA. The redox stress response was found to be similarly repressed by dnaK2 overexpression. Considered together with the previous information, we propose a negative feedback mechanism of the Hik2-Rre1-dependent stress response that maintains the cellular homeostasis mediated by DnaK2.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Noda Institute for Scientific Research

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3