Genome-Wide Analysis of Cotton MYB Transcription Factors and the Functional Validation of GhMYB in Response to Drought Stress

Author:

Su Jiuchang12,Zhan Na1,Cheng Xiaoru1,Song Shanglin1,Dong Tianyu1,Ge Xiaoyang3,Duan Hongying12ORCID

Affiliation:

1. College of Life Sciences, Henan Normal University , Xinxiang 453007, China

2. Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University , Xinxiang 453007, China

3. State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences , Anyang 455000, China

Abstract

Abstract MYB transcription factors play important roles during abiotic stress responses in plants. However, little is known about the accurate systematic analysis of MYB genes in the four cotton species, Gossypium hirsutum, G. barbadense, G. arboreum and G. raimondii. Herein, we performed phylogenetic analysis and showed that cotton MYBs and Arabidopsis MYBs were clustered in the same subfamilies for each species. The identified cotton MYBs were distributed unevenly on chromosomes in various densities for each species, wherein genome-wide tandem and segment duplications were the main driving force of MYB family expansion. Synteny analysis suggested that the abundant collinearity pairs of MYBs were identified between G. hirsutum and the other three species, and that they might have undergone strong purification selection. Characteristics of conserved motifs, along with their consensus sequence, promoter cis elements and gene structure, revealed that MYB proteins might be highly conserved in the same subgroups for each species. Subsequent analysis of differentially expressed genes and expression patterns indicated that most GhMYBs might be involved in response to drought (especially) and salt stress, which was supported by the expression levels of nine GhMYBs using real-time quantitative PCR. Finally, we performed a workflow that combined virus-induced gene silencing and the heterologous transformation of Arabidopsis, which confirmed the positive roles of GhMYBs under drought conditions, as validated by determining the drought-tolerant phenotypes, damage index and/or water loss rate. Collectively, our findings not only expand our understanding of the relationships between evolution and function of MYB genes, but they also provide candidate genes for cotton breeding.

Funder

National Science Foundation of China

Natural Science Foundation of Henan

Program for Innovative Research Team (in Science and Technology) in University of Henan Province

Postdoctoral Research Grant in Henan Province

China Postdoctoral Science Foundation

Henan Science & Technology Research and Development Plan Joint Fund

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3