Sterol Biosynthesis Contributes to Brefeldin-A-Induced Endoplasmic Reticulum Stress Resistance in Chlamydomonas reinhardtii

Author:

Je Sujeong1,Choi Bae Young2ORCID,Kim Eunbi1,Kim Kyungyoon3,Lee Yuree4,Yamaoka Yasuyo1ORCID

Affiliation:

1. Division of Biotechnology, The Catholic University of Korea , 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea

2. Department of Biological Sciences, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

3. Research Institute of Basic Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

4. School of Biological Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

Abstract

Abstract The endoplasmic reticulum (ER) stress response is an evolutionarily conserved mechanism in most eukaryotes. In this response, sterols in the phospholipid bilayer play a crucial role in controlling membrane fluidity and homeostasis. Despite the significance of both the ER stress response and sterols in maintaining ER homeostasis, their relationship remains poorly explored. Our investigation focused on Chlamydomonas strain CC-4533 and revealed that free sterol biosynthesis increased in response to ER stress, except in mutants of the ER stress sensor Inositol-requiring enzyme 1 (IRE1). Transcript analysis of Chlamydomonas experiencing ER stress unveiled the regulatory role of the IRE1/basic leucine zipper 1 pathway in inducing the expression of ERG5, which encodes C-22 sterol desaturase. Through the isolation of three erg5 mutant alleles, we observed a defect in the synthesis of Chlamydomonas’ sterol end products, ergosterol and 7-dehydroporiferasterol. Furthermore, these erg5 mutants also exhibited increased sensitivity to ER stress induced by brefeldin A (BFA, an inhibitor of ER–Golgi trafficking), whereas tunicamycin (an inhibitor of N-glycosylation) and dithiothreitol (an inhibitor of disulfide-bond formation) had no such effect. Intriguingly, the sterol biosynthesis inhibitors fenpropimorph and fenhexamid, which impede steps upstream of the ERG5 enzyme in sterol biosynthesis, rescued BFA hypersensitivity in CC-4533 cells. Collectively, our findings support the conclusion that the accumulation of intermediates in the sterol biosynthetic pathway influences ER stress in a complex manner. This study highlights the significance and complexity of regulating sterol biosynthesis during the ER stress response in microalgae.

Funder

National Research Foundation of Korea

Catholic University of Korea

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3