FERONIA regulates salt tolerance in Arabidopsis by controlling photorespiratory flux

Author:

Jiang Wei1ORCID,Wang Zhihao12ORCID,Li Yali12ORCID,Liu Xin1ORCID,Ren Yuying12ORCID,Li Chao1ORCID,Luo Shengji23ORCID,Singh Rahul Mohan3ORCID,Li Yan4ORCID,Kim Chanhong3ORCID,Zhao Chunzhao1ORCID

Affiliation:

1. Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences , Shanghai 200032 , China

2. University of Chinese Academy of Sciences , Beijing 100049 , China

3. Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences , Shanghai 200032 , China

4. State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University , Nanjing 210095 , China

Abstract

Abstract Photorespiration is an energetically costly metabolic pathway in plants that responds to environmental stresses. The molecular basis of the regulation of the photorespiratory cycle under stress conditions remains unclear. Here, we discovered that FERONIA (FER) regulates photorespiratory flow under salt stress in Arabidopsis (Arabidopsis thaliana). FER mutation results in hypersensitivity to salt stress, but disruption of ferredoxin-dependent glutamate synthase 1 (GLU1), an enzyme that participates in the photorespiratory pathway by producing glutamate, greatly suppresses fer-4 hypersensitivity to salt stress primarily due to reduced glycine yield. In contrast, disrupting mitochondrial serine hydroxymethyltransferase1 (SHM1), which is supposed to increase glycine levels by hampering the conversion of glycine to serine in the photorespiratory cycle, aggravates fer-4 hypersensitivity to salt stress. Biochemical data show that FER interacts with and phosphorylates SHM1, and this phosphorylation modulates SHM1 stability. Additionally, the production of proline and its intermediate △1-pyrroline-5-carboxylate (P5C), which are both synthesized from glutamate, also contributes to fer-4 hypersensitivity to salt stress. In conclusion, this study elucidates the functional mechanism of FER in regulating salt tolerance by modulating photorespiratory flux, which greatly broadens our understanding of how plants adapt to high salinity.

Funder

CPSF

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

National Key Research and Development Program of China

Key Laboratory of Plant Design, and the National Key Laboratory of Plant Molecular Genetics

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3