Palladium nanoplates scotch breast cancer lung metastasis by constraining epithelial-mesenchymal transition

Author:

Wang Shunhao12,Li Jingchao3,Chen Mei4,Ren Liting13,Feng Wenya12,Xu Lining12,Chen Xiaolan3,Xia Tian5,Zheng Nanfeng3ORCID,Liu Sijin12ORCID

Affiliation:

1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen 361005, China

4. College of Materials Science and Engineering, Hunan University, Changsha 410082, China

5. Division of Nanomedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA

Abstract

Abstract Metastasis accounts for the majority of cancer deaths in many tumor types including breast cancer. Epithelial-mesenchymal transition (EMT) is the driving force for the occurrence and progression of metastasis, however, no targeted strategies to block the EMT program are currently available to combat metastasis. Diverse engineered nanomaterials (ENMs) have been reported to exert promising anti-cancer effects, however, no ENMs have been designed to target EMT. Palladium (Pd) nanomaterials, a type of ENM, have received substantial attention in nanomedicine due to their favorable photothermal performance for cancer therapeutics. Herein, Pd nanoplates (PdPL) were found to be preferentially biodistributed to both primary tumors and metastatic tumors. Importantly, PdPL showed a significant inhibition of lung metastasis with and without near-infrared (NIR) irradiation. Mechanistic investigations revealed that EMT was significantly compromised in breast cancer cells upon the PdPL treatment, which was partially due to the inhibition of the transforming growth factor-beta (TGF-β) signaling. Strikingly, the PdPL was found to directly interact with TGF-β proteins to diminish TGF-β functions in activating its downstream signaling, as evidenced by the reduced phosphorylation of Smad2. Notably, TGF-β-independent pathways were also involved in undermining EMT and other important biological processes that are necessary for metastasis. Additionally, NIR irradiation elicited synergistic effects on PdPL-induced inhibition of primary tumors and metastasis. In summary, these results revealed that the PdPL remarkably curbed metastasis by inhibiting EMT signaling, thereby indicating the promising potential of PdPL as a therapeutic agent for treating breast cancer metastasis.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Chinese Academy of Sciences

National Key Research and Development Program

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3